A	A1801	Pages: 2
Reg No.:	Name:	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: MA101 **Course Name: CALCULUS**

Max. Marks: 100 Duration: 3 Hours

PART A

- Marks Answer all questions, each carries 5 marks.
- Determine whether the series $\sum_{k=0}^{\infty} \frac{5}{4^k}$ converges. If so, find the sum 1 (2)
- Examine the convergence of $\sum (\frac{k}{k+1})^{k^2}$ (3)
- Find the slope of the surface $z = x e^{-y} + 5y$ in the y direction at the point (4, 0) 2 (2)
 - b) Show the function $f(x, y) = e^x \sin y + e^y \cos x$ satisfies the Laplace's equation (3) $f_{xx} + f_{yy} = 0$
- Find the directional derivative of $f(x, y, z) = x^3z yx^2 + z^2$ at P (2, -1, 1) 3 a) (2) in the direction of $3\vec{i} - j + 2k$
 - Find the unit tangent vector and unit normal vector to the curve (3) $r(t) = 4\cos t \, \boldsymbol{i} + 4\sin t \, \boldsymbol{j} + t \, \boldsymbol{k} \, at \, t = \frac{\pi}{2}$
- Using double integration, evaluate the area enclosed by the lines 4 (2)
 - $x = 0, \quad y = 0, \frac{x}{a} + \frac{y}{h} = 1$
 - b) (3) $\int_{1}^{2} \int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2} + z^{2}) dx dy dz$
- If $F(x, y, z) = x^2 \mathbf{i} 3\mathbf{j} + yz^2 \mathbf{k}$ find div F(2)
 - b) Find the work done by the force field F = xy i + yz j + zx k on a particle that (3) moves along the curve C: $x = t, y = t^2, z = t^3, 0 \le t \le 1$
- Use Green's theorem to evaluate $\int (xdy ydx)$, where c is the circle $x^2 + y^2 =$ (2)
 - b) If S is any closed surface enclosing a volume V and $\mathbf{F} = x\mathbf{i} + 2y\mathbf{j} + 3z\mathbf{k}$ show (3) $\iint_{S} \mathbf{F.n} \, ds = 6V$

PART B

Module I

Answer any two questions, each carries 5 marks.

- Determine whether the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+7}{k(k+4)}$ is absolutely 7 (5) convergent
- Find the Taylor series expansion of $f(x) = \frac{1}{x+2}$ about x = 18 (5)
- 9 Find the interval of convergence and radius of convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(x+1)^k}{\nu}$ (5)

Module II

Answer any two questions, each carries 5 marks.

- 10 Find the local linear approximation L to the function f(x, y, z) = xyz at the (5) pointP (1,2,3). Also compare the error in approximating f by L at the point Q (1.001, 2.002, 3.003) with the distance PQ.
- 11 (5)
- Locate all relative extrema and saddle points of $f(x,y) = 2xy x^3 y^2$ If $u = f(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$ prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$ 12 (5)

A	A1801 Pages: 2		
	Module III		
Answer any two questions, each carries 5 marks.			
13	Write the parametric equations of the tangent line to the graph of $r(t) = \ln t i + e^{-t} j + t^4 k$ at $t = 2$	(5)	
14	A particle moves along the curve $\mathbf{r} = (t^3 - 4t)\mathbf{i} + (t^2 + 4t)\mathbf{j} +$	(5)	
15	(8 $t^2 - 3t^3$) k where t denotes time. Find (i) the scalar tangential and normal components of acceleration at time t = 2 (ii) the vector tangential and normal components of acceleration at time t = 2 Find the equation to the tangent plane and parametric equations of the normal line to the ellipsoid $x^2 + y^2 + 4z^2 = 12$ at the point (2, 2, 1)	(5)	
	Module IV		
Answer any two questions, each carries 5 marks. $ \begin{array}{ccc} 1 & & & & \\ 1 & & & \\ 1 & & & \\ 1 & & & \\ 1$			
10	Reverse the order of integration and evaluate $\int_{0}^{1} \int_{x}^{1} \frac{x}{x^2 + y^2} dy dx$	(3)	
17	If R is the region bounded by the parabolas $y = x^2$ and $y^2 = x$ in the first	(5)	
	quadrant, evaluate $\iint_{\mathbb{R}} (x+y)dA$		
18	Use triple integral to find the volume of the solid bounded by the surface $y = x^2$ and the planes $y + z = 4$, $z = 0$.	(5)	
Module V			
10	Answer any three questions, each carries 5 marks.	(5)	
19	If $r = x i + y j + z k$ and $r = r $, show that $\nabla \log r = \frac{r}{r^2}$	(5)	
20	Examine whether $\mathbf{F} = (x^2 - yz)\mathbf{i} + (y^2 - zx)\mathbf{j} + (z^2 - xy)\mathbf{k}$ is a conservative field. If so, find the potential function	(5)	
21	Show that $\nabla^2 f(r) = 2 \frac{f'(r)}{r} + f''(r)$, where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, $r = \mathbf{r} $	(5)	
22	Compute the line integral $\int_{c}^{b} (y^{2}dx - x^{2}dy)$ along the triangle whose vertices are	(5)	
22	(1,0), (0,1) and $(-1,0)$	(5)	
23	Show that the line integral $\int_c (y \sin x dx - \cos x dy)$ is independent of the path and	(5)	
hence evaluate it from (0, 1) and (π , -1) Module VI			
	Answer any three questions, each carries 5 marks.		
24	Using Green's theorem, find the work done by the force field $\vec{f}(x,y) = (e^x - y^3)\vec{i} + (\cos y + x^3)\vec{j}$ on a particle that travels once around the unit circle $x^2 + y^2 = 1$ in the counter clockwise direction.	(5)	
25	Using Green's theorem evaluate $\int_c (xy + y^2) dx + x^2 dy$, where c is the boundary of	(5)	
26	the area common to the curve $y = x^2$ and $y = x$ Evaluate the surface integral $\iint_S xz ds$, where S is the part of the plane	(5)	
	••5		
27	x + y + z = 1 that lies in the first octant Using divergence theorem, evaluate $\iint_S F.n ds$ where	(5)	
28	$F = (x^2 + y) \mathbf{i} + z^2 \mathbf{j} + (e^y - z) \mathbf{k}$ and S is the surface of the rectangular solid bounded by the co ordinate planes and the planes $x = 3$, $y = 1$, $z = 3$ Apply Stokes's theorem to evaluate $\int F dr$, where $\mathbf{F} = (x^2 - y^2)\mathbf{i} + 2xy\mathbf{j}$ and c is	(5)	
	the rectangle in the xy plane bounded by the lines $x = 0$, $y = 0$, $x = a$ and $y = b$ ****		